References

Alzheimer's Association. (2025). What Is Alzheimer’s Disease? Alzheimer’s Disease and Dementia; Alzheimer’s Association. https://www.alz.org/alzheimers-dementia/what-is-alzheimers  

De Jager, P. L., Srivastava, G., Lunnon, K., et al. (2014). Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nature Neuroscience, 17(9), 1156–1163. https://doi.org/10.1038/nn.3786.

Gräff, J., Joseph, Nadine F., Horn, Meryl E., et al. (2014). Epigenetic Priming of Memory Updating during Reconsolidation to Attenuate Remote Fear Memories. Cell, 156(1-2), 261–276. https://doi.org/10.1016/j.cell.2013.12.020. 

Jia, H., Kast, R. J., Steffan, J. S., & Thomas, E. A. (2012). Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington’s disease mice: implications for the ubiquitin–proteasomal and autophagy systems. Human Molecular Genetics, 21(24), 5280–5293. https://doi.org/10.1093/hmg/dds379. 

John Hopkins Medicine. (2020). Huntington’s Disease. John Hopkins Medicine. https://www.hopkinsmedicine.org/health/conditions-and-diseases/huntingtons-disease

Jowaed, A., Schmitt, I., Kaut, O., & Wullner, U. (2010). Methylation Regulates Alpha-Synuclein Expression and Is Decreased in Parkinson’s Disease Patients’ Brains. Journal of Neuroscience, 30(18), 6355–6359. https://doi.org/10.1523/jneurosci.6119-09.2010.

Kelleher, R. J., & Shen, J. (2017). Presenilin-1 mutations and Alzheimer’s disease. Proceedings of the National Academy of Sciences, 114(4), 629–631. https://doi.org/10.1073/pnas.1619574114

Li, Y., Gu, Z., Lin, S., Chen, L., et al. (2022). Histone Deacetylases as Epigenetic Targets for Treating Parkinson’s Disease. Brain Sciences, 12(5). https://doi.org/10.3390/brainsci12050672.

MAYO Clinic. (2023, May 26). Parkinson’s disease - Diagnosis and treatment. Mayoclinic.org. https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/diagnosis-treatment/drc-20376062

National Institute on Aging. (2024, July 2). What causes Alzheimer’s disease? National Institute on Aging. https://www.nia.nih.gov/health/alzheimers-causes-and-risk-factors/what-causes-alzheimers-disease 

NHS. (2021, July 5). Causes - Alzheimer’s Disease. NHS. https://www.nhs.uk/conditions/alzheimers-disease/causes/

Rook, M. E., & Southwell, A. L. (2022). Antisense Oligonucleotide Therapy: From Design to the Huntington Disease Clinic. BioDrugs, 36(2). https://doi.org/10.1007/s40259-022-00519-9

Ross, C. A., & Tabrizi, S. J. (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. The Lancet Neurology, 10(1), 83–98. https://doi.org/10.1016/s1474-4422(10)70245-3.  

Roubroeks, J. A. Y., Smith, A. R., Smith, R. G., et al. (2020). An epigenome-wide association study of Alzheimer’s disease blood highlights robust DNA hypermethylation in the HOXB6 gene. Neurobiology of Aging, 95, 26–45. https://doi.org/10.1016/j.neurobiolaging.2020.06.023.

Rui, Q., Ni, H., Li, D., Gao, R., & Chen, G. (2018). The Role of LRRK2 in Neurodegeneration of Parkinson Disease. Current Neuropharmacology, 16(9), 1348–1357. https://doi.org/10.2174/1570159x16666180222165418

Santana, D. A., Smith, M. de A. C., & Chen, E. S. (2023). Histone Modifications in Alzheimer’s Disease. Genes, 14(2), 347. https://doi.org/10.3390/genes14020347

Shin, J. W., & Lee, J.-M. (2017). The prospects of CRISPR-based genome engineering in the treatment of neurodegenerative disorders. Therapeutic Advances in Neurological Disorders, 11, 175628561774183. https://doi.org/10.1177/1756285617741837.  

Song, H., Chen, J., Huang, J., et al. (2023). Epigenetic modification in Parkinson’s disease. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1123621. 

Thomas, E. A., Coppola, G., Desplats, P. A., et al. (2008). The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proceedings of the National Academy of Sciences, 105(40), 15564–15569. https://doi.org/10.1073/pnas.0804249105.